Planar surface implanted diffractive grating couplers in SOI.

نویسندگان

  • R Topley
  • L O'Faolain
  • D J Thomson
  • F Y Gardes
  • G Z Mashanovich
  • G T Reed
چکیده

Grating couplers are used to efficiently couple light from an optical fibre to a silicon waveguide as they allow light to be coupled into or out from any location on the device without the need for cleaving. However, using the typical surface relief grating fabrication method reduces surface planarity and hence makes further processing more difficult. The ability to manufacture high quality material layers on top of a grating coupler allows multiple active optical layers to be realized for multi-layer integrated optical circuits, and may enable monolithic integration of optical and electronic circuits on separate layers. Furthermore, the nature of the refractive index change may enable removal via rapid thermal annealing for wafer scale testing applications. We demonstrate for the first time a coupling device utilising a refractive index change introduced by lattice disorder. Simulations show 44% of the power can be extracted from the waveguide by using uniform implanted gratings, which is not dissimilar to the performance of typical uniform surface relief gratings currently used. Losses determined empirically, of 5.5 dB per coupler have been demonstrated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient 5.2 µm wavelength fiber-to-chip grating couplers for the Ge-on-Si and Ge-on-SOI mid-infrared waveguide platform.

We present the design, fabrication and characterization of efficient fiber-to-chip grating couplers on a Germanium-on-Silicon (Ge-on-Si) and Germanium-on-silicon-on-insulator (Ge-on-SOI) platform in the 5 µm wavelength range. The best grating couplers on Ge-on-Si and Ge-on-SOI have simulated coupling efficiencies of -4 dB (40%) with a 3 dB bandwidth of 180 nm and -1.5 dB (70%) with a 3 dB bandw...

متن کامل

Compact grating couplers on silicon-on-insulator with reduced backreflection.

The backreflection in commonly used grating couplers on silicon-on-insulator (SOI) is not negligible for many applications. This reflection is dramatically reduced in our improved compact grating coupler design, which directs the reflection away from the input waveguide. Realized devices on SOI show that the reflection can be reduced down to -50 dB without an apparent transmission penalty.

متن کامل

Initiation : a Study of Planar Dielectric Grating Couplers

A program of study of planar dielectric grating couplers was undertaken. The study focused on the problems associated with using dielectric grating couplers to achieve high efficiency beam coupling to planar waveguide

متن کامل

Optical Filters Utilizing Ion Implanted Bragg Gratings in SOI Waveguides

The refractive index modulation associated with the implantation of oxygen or silicon into waveguides formed in silicon-oninsulator (SOI) has been investigated to determine the feasibility of producing planar, implantation induced Bragg grating optical filters. A two-dimensional coupled mode theory-based simulation suggests that relatively short grating lengths, on the order of a thousand micro...

متن کامل

High efficiency diffractive grating coupler based on transferred silicon nanomembrane overlay on photonic waveguide

We report here the design of a new type of high efficiency grating coupler, based on single crystalline Si nanomembrane overlay and stacking. Such high efficiency diffractive grating couplers are designed for the purpose of coupling light between single mode fibres and nanophotonic waveguides, and for the coupling between multiple photonic interconnect layers for compact three-dimensional verti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 22 1  شماره 

صفحات  -

تاریخ انتشار 2014